Enlargement Methods for Computing the Inverse Matrix
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn computing generalized inverse systems using matrix pencil methods
We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state space representation. We put a particular emphasis on two classes of inverses: the week generalized inverse and the MoorePenrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computa...
متن کاملComputing Generalized Inverse Systems Using Matrix Pencil Methods
We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the MoorePenrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computati...
متن کاملDomain-Decomposition-Type Methods for Computing the Diagonal of a Matrix Inverse
This paper presents two methods based on domain decomposition concepts for determining the diagonal of the inverse of a sparse matrix. The first uses a divide-and-conquer principle and the ShermanMorrison-Woodbury formula, and assumes that the matrix can be decomposed into a 2 × 2 block-diagonal matrix and a low-rank matrix. The second method is a standard domain decomposition approach in which...
متن کاملComputing the Isolated Roots by Matrix Methods
Two main approaches are used, nowadays, to compute the roots of a zero-dimensional polynomial system. The first one involves Gröbner basis computation, and applies to any zero-dimensional system. But, it is performed with exact arithmetic and, usually, large numbers appear during the computation. The other approach is based on resultant formulations and can be performed with floating point arit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1946
ISSN: 0003-4851
DOI: 10.1214/aoms/1177730946